Climate Dynamics (2001) 17:213-218

© Springer-Verlag 2001

G. J. Boer - S. J. Lambert

Second-order space-time climate difference statistics

Received: 26 January 2000 / Accepted: 9 June 2000

Abstract An approach to the calculation and display of
second order space-time difference statistics, suitable for
various applications ranging from weather forecasting to
climate simulation, is discussed. The representation of
the space-time agreement between model and observed
quantities (or generally between any two data sets)
depends on treating deterministic and random compo-
nents of the variance in an appropriate way depending
on context. A diagram to display the second order mean
square difference, the correlation, and the ratio of vari-
ances on a single diagram in an intuitive way is also
proposed. An example, comparing observed and simu-
lated surface air temperatures from a group of models in
the Coupled Model Intercomparison Program (CMIP),
is presented.

1 Introduction

The comparison of fields in space and time is a common
feature of meteorology and climatology. In meteorolo-
gy, the comparison of forecasts with subsequent obser-
vations is used to demonstrate current levels of forecast
skill, to evaluate potential changes in forecast methods,
to document the improvement of forecast skill with time,
and to permit the forecast user to weigh the value of the
forecast in practical applications. Weather forecasts are
almost universally produced with numerical models
which are initialized with analyses of the atmosphere
and some surface fields. The models are integrated
forward in time for periods of days to weeks. The skill of
an operational forecast measures the extent to which the
forecast evolution of some variable correctly predicts the
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actual evolution of that variable in space and time.
Forecast skill decreases comparatively rapidly because
of the chaotic nature of the atmosphere where small
errors in initial conditions and in forecast models am-
plify rapidly resulting in the well-known two week
“predictability limit” for deterministic forecasts.

Climate forecasts, for periods beyond the determin-
istic predictability limit, do not attempt to predict the
actual evolution of the system in detail but rather the
evolution of some climate statistic. Climate forecasts
made with models nevertheless follow the same general
approach as weather forecasts. The climate model,
which in this case may include both the atmosphere and
the tropical or global ocean, is initialized based on
available data and subsequently integrated forward in
time. In this case, the details of the evolution of the
forecast are not expected to parallel those of the obser-
vations throughout the forecast period. Certain climate
statistics, such as monthly or seasonal anomalies from
the climatological mean may, however, exhibit useful
skill. This is measured by comparing the forecast and
observed values of these statistics.

Coupled climate models attempt to simulate the ob-
served distribution of the climatological statistics of the
system which arise as a consequence of the governing
physical processes and balances embodied in the model
equations. A climate model is initialized with more or
less arbitrary initial conditions which may, but need not,
correspond to observations of the real system. In either
case, the early part of a climate simulation, where the
modelled system is coming into equilibrium with its
forcing, is discarded. The subsequent integration does
not attempt to reproduce the actual observed evolution
of the system but only one of many possible evolutions
given the forcing of the system. The skill of the climate
model resides in its ability to reproduce the observed
distribution of the set of climate statistics.

There are many ways to measure skill but we
concentrate here on the calculation and display of simple
second order statistics involving mean square differenc-
es, variances, and correlations.
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2 Second order statistics

A straightforward comparison of two data sets appeals to second
order statistics, such as mean square differences, variances,
covariances, and the associated ratios of these terms including
correlation. The simple geometric interpretation of the mean
square difference, shown in Fig. 1, treats the two data sets as vec-
tors X= {X(;“h (pjvpkvll)} = {Xot}7 Y= {Y(;{iv (pj7pk7t1)} = {YM}
The product X- Y = |X]||Y|cos ¢ = >, w,X,Y, is written in terms
of generalized vector lengths |X| and | Y| and a measure, cos ¢, of
the angle between the vectors. Squared vector lengths follow as
X-X=|X*= >, weX? and similarly for Y. The weights w, are
chosen to give the appropriate area and time average over the
region and period of interest.

In vector notation the squared length of the difference vector,
d=Y — X, is written as

ld* =Y — X" = |X> +|Y -2X- Y

— X+ |¥P —2/X|| ¥l cos ¢ (1)
and in scalar notation as
EZWZO’iﬁ*O‘i*ZO}(U){V . (2)

The overbar represents a generalized averaging operation in space
and time corresponding to the weighted sum in the expression for
the vector dot product, the lengths of the vectors are represented by
ox and oy, and r = cos ¢ = X - Y/|X]|Y| is a measure of the angle
between the vectors. We generally adopt the “centred” approach
where the means of each data set are subtracted out before the
terms in Eq. (2) are calculated so that oy and oy are the usual
standard deviations (their squares the variances), and r the centred

Fig. 1 Graphical representation of the mean squared difference
between two data vectors. The length of the data vectors is measured
by the standard deviation, and the length of the difference vector by
the root mean squared difference. The cosine of the angle between the
vectors represents the correlation. The difference vector may be
decomposed into components in several ways. The climate mean
squared difference takes into account the difference between deter-
ministic and random components resulting in a reduction of the angle
between the vectors and a reduced difference vector as indicated in the
bottom panel and explained in the text
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correlation coefficient. However, the results follow also in the
“uncentred” case when root mean squares and uncentred correla-
tions are used.

2.1 Mean square difference components

The geometric view and Egs. (1, 2) illustrate the link between the
mean square difference (msd) and the correlation, the two common
second order measures of the agreement between fields. The geo-
metric view suggests the further decomposition of the difference
vector as d = dj + d, with components respectively in the direction
of and perpendicular to the reference vector X where

d = |dy* + |d. P = & = (oyr —ox)* + a3(1 - ) . (3)

The difference vector may also be written as d = d,, + d,,, as illus-
trated in Fig. 1, where, because the components are not orthogonal,

(d? = |du + |dy|* + 24, - d, = o
= (oy — ox)* + 205 (1 — 1) + 20x (ay — ox)(1 —7) (4)

Here |d,|” = (oy — ox)* is the mean square difference that arises
because of differences in the lengths of the data vectors but not
their orientation (as would be the case if »=1). Similarly,
\dp\z =20%(1 —r) is the msd that arises from the difference in
orientation of the vectors (a difference of pattern in the sense of
correlation) but not of length (as would be the case if oy = oy).
The remaining contribution 2d,, - d, = 20x(oy — ox)(1 —r) is the
consequence of there being differences in both magnitude and
pattern (length and orientation of the vectors) simultaneously.

The msd may also be written in a form with a less obvious
geometric interpretation as

&> = (Y = X)* = (o +03)(1 = fr) = (o +03)(1 — p) (5)

where = 20yay /(6% + 0%) < 1 and p = Br is a scaled correlation
coefficient. Here o2 + o3 is the msd when the data vectors are
orthogonal, i.e. when the correlation between the fields is zero. The
pattern factor 1 — p gives the fraction of this limiting value.

2.2 Scaled statistics

The msd is often scaled to give the relative or fractional value

f = d*/a% which measures the msd in terms of the reference vari-
ance and this is done here. In terms of Fig. 1, the vectors are
rescaled so that the reference data vector has unit length. Other
scalings may be appropriate depending on the purpose, for instance
Boer (1994) scales the msd between weather forecasts and obser-
vations as f = d*/(0% + %) = 1 — fir where the decorrelation of
forecast and observations with forecast range gives the limiting
values f — 1 asr — 0.

3 Deterministic and random components

There are many variables of interest for weather fore-
casting and climate modelling but attention is usually
concentrated on relatively few of them. For instance,
500 mb height is a standard forecast variable and the
skill at forecasting this variable is often intercompared
by operational forecast centres. Temperature and pre-
cipitation are particularly important for forecasts at all
time ranges and are the variables usually treated in
seasonal and multi-seasonal forecasts (e.g. Kirtman
2000). These variables are also basic to climate studies
and to climate change simulations (e.g. Lambert and
Boer 2000; Boer et al. 2000a, b).
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The useful comparison of fields in both space and
time using second order statistics depends on the ability
to separate these fields into what are here termed
deterministic and random components. The variability of
some quantity may be deterministic in one case and
random in another depending on the context and pur-
pose of the comparison. As an example consider the
variation of temperature at a particular point. The msd
between the observed and forecast temperature at that
point will be a measure of the deterministic forecast skill
for a short-range weather forecast. For a climate simu-
lation, the model is expected to reproduce the observed
distribution of mean temperature and of the mean
diurnal and seasonal cycles of temperature since these
are forced deterministic components. The remaining
variability is an internally generated non-linear natural
random component and modelled and observed values
of this component (or those from different realizations
with the same model) are not expected to be correlated.
The skill of a climate simulation is measured by
comparing the variances and other second order statis-
tics of simulated and observed temperatures, but not the
detailed evolution implied by the temporal correlation.

We deal here primarily with climate simulations and
write

X:X0+Xf+X/ (6)

where the variable X is taken as the sum of a long-term
climate mean Xy, a function of space but not of time,
other forced components X, which may be a function of
both space and time, and the remaining random natural
variability of the non-linear system represented as X’.
Both the mean and any other forced components (such as
the annual and diurnal cycles or forced climate change)
are deterministic in that they are the physically deter-
mined response of the system to a particular forcing.

The forced components depend on the separation of
the system into external or prescribed and internal or
interactive components. For short-term weather fore-
casting, forecast skill consists in the ability to predict the
detailed evolution from specific initial conditions. For
seasonal forecasting, anomalous SSTs may be specified
and act to force the atmospheric state. The skill of the
seasonal forecast is in correctly producing the average
forced response, rather than the detailed evolution of X”.
For climate models, the mean, and the annual and
diurnal cycles of temperature and other variables are
forced by solar radiation while the natural variability is
internally generated and will be different for different
simulations. The skill of a climate simulation is in
correctly reproducing the forced components together
with pertinent statistics of the natural variability.

We assume that the mean and other forced compo-
nents may be identified by averaging over a number of
realizations or a sufficiently long simulation. We calcu-
late and display simple second order space-time mea-
sures of agreement between model and observations
where the forced deterministic and random natural
variability components are combined in a suitable way.
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4 Assessment and intercomparison of model results

Complicated numerical models are used for weather
forecasting, climate forecasting, and climate simulation.
The continued improvement of such models is a con-
stant theme of model development. The large amounts
of the data produced by these models, especially climate
models, exceed that observed and/or analyzed. It is
important to “‘assess’” model results in order to know the
extent to which they may be relied on in future forecasts
of weather, short-term climate variability, and long-term
climate change. However, the non-linearity and com-
plexity of the climate system, and the models that
attempt to simulate its behaviour, means that model
deficiencies are not easily traced to their causes. Model
intercomparison projects (MIPs) (Gates 1987; Boer
et al. 1992; Gates et al. 1999; Boer 2000) attempt to gain
insight into model behaviour by comparing model
results among themselves as well as with observations.
The accompanying paper (Lambert and Boer 2000) is
an example of one such MIP. In that paper, among
other things, we represent aspects of simulated climate
using basic second order measures including scaled

mean square differences d”/o%, the ratio of variances
o’y /0%, and the correlation r, all represented on a single
diagram. Figure 2 is such a diagram which is an out-
growth of a diagram due to Taylor as described in
a recent MIP publication (Gates et al. 1999) but with
several important differences as discussed later*.

4.1 A “climate” mean square difference

We consider observed and modelled climate data for the
current climate (or simulated climate data from two
climate models). For concreteness, consider monthly
mean temperatures. The data are of the form Eq. (6)
where the climate mean is well estimated as the long-
time mean, the forced component consists of the annual
cycle about this mean, and what remains is the natural
variability. The msd between model result Y and ob-
servations X is

> = (Y —X)* = (Yo— X))’ + (¥ — X;)?

+ (Y —X) =d} +d?+d” (7)
where the overbar is a general space-time average. We
expect a climate model to be able to simulate the spatial
distribution of the mean climate and the spatial distri-
bution and temporal behaviour of the annual cycle.
These are forced deterministic climate components
and the msd between modelled and observed values is
measured by dj and d}.

This is not the case for the remaining natural vari-
ability since the climate model is not expected to

*Taylor, K.E. summarizing multiple aspects of mode performance
in a single diagram. Submitted to J. Geophys. Res.
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Fig. 2 The BLT diagram representing the relative climate mean
squared difference, the ratio of the variances, and the effective
correlation between data sets

reproduce a particular observed evolution of this com-
ponent. In other words, the correlation of the modelled
and observed natural variability is expected to be zero,
even if the model is a perfect climate model. We do
expect the model to produce the correct magnitude of
the variance of the natural variability, however, and this

is measured by a modified msd where d”? is replaced by

(8)
This term involves only the difference in the observed
and modelled standard deviations of the natural vari-
ability, as discussed in connection with Eq. (4), and
discounts that part of the msd that implicitly assumes
that the observed and modelled natural variability
should be correlated. The modified msd is smaller than
the usual musd since (for ¥ = 0 as expected),

?: (Uy/ — Jx/)z

0% =d”? —2ay0yp(1 —F)=d? — 2oy 0y .

9)
A suitable space-time climate mean square difference,
(cmsd) is given by
N =d}+d+5° . (10)
This can be rewritten as

A’ = 6% + a2 — 20x0y7

(1)

which has the basic form of Eq. (2) but with a modified
correlation measure given by

F=cosh=r-+ (1—+)
Ox0y
=4 XIS = cos Q@ (12)
0x0y

so that @ < ¢. In terms of Fig. 1, the model data vector
has been rotated toward the observed data vector
without change of length giving an appropriate measure
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of the space-time difference for climate data as A. The
geometric representation implies that |# < 1 which may
also be shown algebraically.

This approach differs, at least in flavour, from that of
Taylor as reported in Gates et al. (1999). In the limiting
case of no sampling error, a “perfect” climate model
would, among other things, simulate forced components
that match those observed so that d? =d? =0. The
unforced natural variability simulated by the model
would be of the same magnitude as that observed so that
oy = oy, but the simulated and observed variability
would not be expected to be temporally correlated so
that ¥ = 0. In this case the msd for a perfect climate
model has a non-zero value

A’ =d} +d} +d? — d”?
= 0% + 0% + 200077 — 20% >0 .

The c¢msd is modified to adjust for the expected lack of
temporal correlation between observed and modelled
natural variability so that, for this measure,

P:dig—i—dif—ﬁ-y%ﬁ:(dy/—ﬂx/)zﬁo

in the limiting case.

4.2 The mean model cmsd

If simulations by different climate models are considered
to be independent estimates or realizations of the cli-
mate, each with different errors, then the ensemble mean
obtained by averaging over the collection of model re-
sults may at least partially average out these errors to
give an improved estimate of the climate (see also the
discussion in Lambert and Boer 2000). The second order
climate difference statistics for the resulting mean model
may also be calculated and compared with the statistics
for individual models. Climate statistics for the mean
model are obtained by treating deterministic and ran-
dom components separately as in the case of the cmsd
and for the same reasons. Mean model deterministic
components are estimated as {Y}, {¥;} where the braces
represent the ensemble mean over the collection of
model results. The mean model cmsd is

V2 = {do}* + {d;}’ + & (13)
where the first two terms are just those in Eq. (10) but
with the mean model value appearing in place of an
individual model value, i.e. {dy}* = ({¥%} — Xo)*. This
implicitly assumes a single (presumably accurate) ob-
servation-based value, but if there are several equally
reasonable observation-based estimates, from different
reanalyses for instance, it would also be suitable to use
their ensemble average as {dy}* = ({%} — {Xo})*.

The contribution from the natural variability, anal-
ogous to Eq. (8), is given by

& = (6y —ax)’ (14)
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where the mean model random variance 63, = {d%,} is
obtained by ensemble averaging the over the collection
of model variance values. If an ensemble of observa-
tional values were available then Gy could appear in Eq.
(14) in place of gx. For single member ‘“‘ensembles”
Eq. (13) reverts to Eq. (10) as would be expected.

Although discussed in the context of comparing a
mean model result with observations, the c¢msd in Eq.
(13) is, more generally, an ensemble mean csmd. It may
potentially be used to calculate second order difference
statistics between ensemble means of collections of
model results and collections of observational estimates
as well as between sets of model results with different
characteristics (e.g. different resolutions, different phys-
ical parameterizations) and so on.

4.3 Graphical representation

Figure 1 is the basis of a graphical representation of
second order measures of differences between data sets,
and Fig. 13 of Gates et al. (1999) is such a represen-
tation. We propose, in Fig. 2, a new version of the
diagram where the appropriate cmsd is measured by A’
and the effective correlation by # . Figure 2, which we
refer to as a BLT diagram, is a modified version of Fig.
1 (and Fig. 13 of Gates et al. 1999) where: (1) quan-
tities are scaled by the observed variance to give rela-
tive values, (2) the climate mean square difference is
plotted, (3) the diagram is rotated so that cmsd is zero
at the origin and increases away from that point, and
(4) the relative c¢msd, the variance ratio, and the effec-
tive correlation are all indicated for each point on the
diagram.

The diagram may be used to plot information for
different variables, and to represent the total cmsd
and its various components in a straightforward and
intuitive way.

4.4 Components

The majority of quantities intercompared in CMIP are
global distributions of long-term average quantities, in
effect X = Xj the spatially varying climate mean. In that
case we deal only with the forced component and spatial
averages so d2 = A? (i.e. msd=cmsd). In the case of the
global temperature distribution, for instance, the models
are relatively successful in capturing the strong equator
to pole temperature structure that dominates the global
variance. A typical decomposition of the spatial struc-
ture of temperature, or other variable, is

X=X)+X]"+x* (15)

where (X) is the global mean, [X] the zonal (longitudi-
nal) mean, and X™ = X — (X), and X* = X — [X] are the
respective deviations from these means. The msd

(d) = (d)* + ([d]"?) + (d"?) (16)
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represents differences in global mean temperature, dif-
ferences in the north-south structure of temperature, and
differences in the remaining geographical temperature
structure after the mean north-south structure has been
subtracted out. The ability of the climate model to re-
produce this latter component is a much more stringent
test than the ability to reproduce the strongly forced
north-south component. This is seen in Fig. 2 of
Lambert and Boer (2000) for instance.

5 The space-time cmsd of surface air temperature

The space-time cmsd is an appropriate second order
measure of the difference between a modelled and ob-
served quantity in the context of climate simulation.
Surface air temperature is the only quantity in the
Coupled Model Intercomparison Project (CMIP1) data
base which has both the temporal and spatial informa-
tion needed to calculate it, however. Figure 3 plots the
space-time cmsd calculated from Eq. (10) where the
observation-based data are 40 years of monthly mean
surface air temperatures from the NCEP reanalysis. The
overbar represents the average over the globe and over
this time period.
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Fig. 3 The second order space-time climate mean square difference
statistics for simulated and observed monthly mean surface air
temperature for individual models and for the mean model. Squares
indicate values for the total c¢msd and circles for the c¢msd of the
geographic component which is obtained by removing the zonal
average and hence the strong north-south structure of the temperature
field. The difference between the space-time cmsd used here and the
msd are illustrated, in two cases, by the arrows from the small triangles
(the msd) to the large circles (the cmsd). Simulated values are from the
Coupled Model Intercomparison Project (CMIP) and observed values
are from the NCEP reanalysis
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The total c¢msd, computed from the temperature
field without decomposition into components, is indi-
cated by the squares in Fig. 3 for each of 16 coupled
models. The models are reasonably successful in sim-
ulating the total space-time variance of temperature
(effective correlations range from 0.92 to 0.99 with a
median value of 0.98). For temperature, however, a
large fraction of the spatial and temporal variance is
associated with the strongly forced mean north/south
structure. In this circumstance, as noted in the previ-
ous section, the cmsd is not a very stringent test of
the model’s ability to simulate all features of the field
in question (the cmsd is close to the msd in this case
also).

We consider separately the ability of the models to
simulate the geographic temperature pattern X* which
is obtained by removing the global mean and the
north/south structure as indicated by Eq. (15). The
difference between modelled and observed values is now
d=Y"—X* and the emsd A* = d} + d; + 8" depends
on differences in the mean, annual cycle, and transient
variability of this component. The result is plotted in
Fig. 3 as the circles. Simulating the space-time structure
of this geographical component of the temperature field
is a greater challenge to the models. In this case, the
difference between the space-time cmsd and the msd is
also larger. This is illustrated in two cases by the arrow
from a small triangle (the msd) to a large circle (the
cmsd) indicating the rotation of the model’s data vector
as described in Fig. 1.

The cmsd for the mean model is also shown in Fig. 3.
Measured in this way, the mean model result is closer to
the observations than most, if not all, individual models.
Other mean model results are discussed in Lambert and
Boer (2000).

6 Summary

A space-time climate mean square difference or cmsd,
associated variance and correlation measures, and a
diagram displaying these quantities is described for the
comparison of simulated and observed fields. The cmsd
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depends on the separation of the information into
deterministic forced climate components and the
remaining random natural variability. The difference
between the forced components is measured by the usual
msd which depends both on differences in the variances
of the fields and on their temporal and spatial
correlation. The difference between natural variability
components, on the other hand, is measured only by
the variances since there is no physical reason for
the temporal correlations to be other than zero. The
combined result is a space-time climatological measure
of difference suitable for comparing modelled and
observed data sets or different model results.
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